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We found the same difference for many types of interactions like

comments, reputation...etc.
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Mazimize Z Art(v) = Z Z 1—(1—mH(1 - 55_13)

veV(G) veV(G); wer,
Subject to |A| < k, A C V(G")

Minimize Z Z 1—(1—n"H(1 - 55_101)

veV(G), welt
Subject to|A| < k, A CV(G)
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Applications
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